Totally tight Chvátal-Gomory cuts

نویسنده

  • Adam N. Letchford
چکیده

Let P := {x∈Rn: Ax6 b} be a polyhedron and PI its integral hull. A Chv atal–Gomory (CG) cut is a valid inequality for PI of the form ( A)x6 b , with ∈R+; TA∈ Z and b ∈ Z . We give a polynomial-time algorithm which, given some x∗ ∈P, detects whether a totally tight CG cut exists, i.e., whether there is a CG cut such that ( TA)x∗= b. Such a CG cut is violated by as much as possible under the assumption that x∗ ∈P. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

Gomory-Chvátal cuts are prominent in integer programming. The Gomory-Chvátal closure of a polyhedron is the intersection of all half spaces defined by its Gomory-Chvátal cuts. In this paper, we show that it is NP-complete to decide whether the Gomory-Chvátal closure of a rational polyhedron is empty, even when this polyhedron contains no integer point. This implies that the problem of deciding ...

متن کامل

Improving Integrality Gaps via Chvátal-Gomory Rounding

In this work, we study the strength of the Chvátal-Gomory cut generating procedure for several hard optimization problems. For hypergraph matching on k-uniform hypergraphs, we show that using Chvátal-Gomory cuts of low rank can reduce the integrality gap significantly even though Sherali-Adams relaxation has a large gap even after linear number of rounds. On the other hand, we show that for oth...

متن کامل

Projected Chvátal-Gomory cuts for mixed integer linear programs

Recent experiments by Fischetti and Lodi show that the first Chvátal closure of a pure integer linear program (ILP) often gives a surprisingly tight approximation of the integer hull. They optimize over the first Chvátal closure by modeling the Chvátal–Gomory (CG) separation problem as a mixed integer linear program (MILP) which is then solved by a generalGérard Cornuéjols was supported in part...

متن کامل

Strengthening Chvátal-Gomory cuts and Gomory fractional cuts

Chvátal-Gomory and Gomory fractional cuts are well-known cutting planes for pure integer programming problems. Various methods for strengthening them are known, for example based on subadditive functions or disjunctive techniques. We present a new and surprisingly simple strengthening procedure, discuss its properties, and present some computational results.

متن کامل

Lower Bounds for Chvátal-gomory Style Operators

Valid inequalities or cutting planes for (mixed-) integer programming problems are an essential theoretical tool for studying combinatorial properties of polyhedra. They are also of utmost importance for solving optimization problems in practice; in fact any modern solver relies on several families of cutting planes. The Chvátal-Gomory procedure, one such approach, has a peculiarity that differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2002